Class/Week #3: Valuation in M&A Example of recapture of depreciation in asset purchase Historical cost = #5m Deprecialed acq. cost = #1m Sales price today = \$10 m taxed { capital states at capital gain \$ \$ 5 m texed { depreciation { | m corp. tax Merger Valuation Mergers & Acquisitions Valuation + PV (Synersy) Independent Varget = Varget + Sym + Sym Rev. Enh. standalone | CF; | Hrriv. enh | Fin f rev. enh. Different synergies are evaluated separate (note the different discount rates) # Valuing Cost Savings & Asset Reduction | | | | | | | | | | | | _ | |----|---|-----|------------|-----|-------|-----|------|--------|--------------|------|-------| | | Year | | 0 | | 1 | | 2 | 3 | 4 | | 5 | | 1 | Pre-Tax Cost Savings, Constant US\$ | | | \$ | 50 | \$ | 100 | \$ 100 | \$ 100 | \$ | 100 | | | Expected Inflation Rate | | | | 2% | | 2% | 2% | 2% | | 2% | | | Growth Rate FCF (nominal), perpetuity | 2% | | | | | | | | | | | | Discount Rate | 6% | | | | | | | | | | | 5 | Ongoing Investment/Savings (year 3+) | 5% | | | | | | | | | | | 6 | Pre-Tax Cost Savings, Current US\$ COST SAVIN | IGS | | \$ | 51 | \$ | 104 | \$ 106 | \$ 108 | \$ | 110 | | 7 | Tax Expense (@ .40) | | | | (20) | | (42) | (42) | (43) | | (44 | | 8 | After-Tax Cost Savings | | | | 31 | | 62 | 64 | 65 | | 66 | | 9 | Less: Investment to Realize Savings | | \$ (1,000) | | | | | (5) | (5) | | (6) | | 10 | Plus: Disinvestment Associated with the Savings | | | -10 | 20 | | 20 | 10 | • | | * | | 11 | Subtotal ASSET REDUCTION | NC | (1,000) | | 51 | | 82 | 68 | 60 | | 61 | | 12 | Continuation Value | | | | | | | 311 | | | 1,548 | | 13 | FCF | | \$ (1,000) | \$ | 51 | \$ | 82 | \$ 68 | \$ 60 | \$ 1 | 1,609 | | | NPV Cost Savings have multiple | (| A 400 l | | | 1 | rreg | ular c | F:
tom ye | | 11. | | | NPV Cost Savings have multiple | | \$428 | | | | | | | | | | 15 | IRR Synergy Investment | | 15% | | | Ye | ar | #2; | t2 to | 100 | - 7 H | | | can calculate with
MIRR function | 7 | ote: disc | | | I. | nere | ase 17 | yeaz | y . | #5 | | | Can carcara. | (N | ote: disc | ou | int (| 0 (| cost | of deb | t' | | | $$\begin{cases} PV_5 = 1,548 = Continuation Value_5 \\ = \frac{CF_5 * (1+\$)}{r - \$} = \frac{CF_6}{r - \$} \end{cases}$$ Calculation of the continuation value for the cost savings real CF — real discount rates (real V + H) = (H + hom. V)Nom. F (I + F)Sinflation nom. CF -> nominal discount rates # Valuing Revenue Enhancements | | Year | | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | |----|--|-----|-------------|-----------|-------|-----|-------|--------------|-------|------|------|----|------| | 1 | Revenue Enhancements, Constant Dollars | | | \$ | 100 | \$ | 200 | \$ | 200 | \$ | 200 | \$ | 200 | | | Expected Inflation Rate | | | | 2% | | 2% | | 2% | | 2% | | 2% | | | Growth Rate FCF (nominal), in perpetuity | 3% | | | 200 | | | | | 15.5 | | | | | | Discount Rate | 15% |
No | te | that | r | evenu | e | enhar | 1ce | ment | 5 | are | | | Ongoing Investment/Revenue (year 1+) | 5% | Fish | cie | er th | 921 | cost | - 5 | YMEZ | 4 10 | 25 | | | | | Operating Cost/Revenues | 45% | - 10 m - 14 | | | 1 | | | / | ر | | | | | 7 | PV Revenue Enhancements | | | \$ | 102 | \$ | 208 | \$ | 212 | \$ | 216 | \$ | 221 | | | Operating Costs Earmark | | | 200.4.000 | (46) | | (94) | Option House | (96) | | (97) | | (99) | | | Tax Expense (@ .40) | | | | (22) | | (46) | | (47) | | (48) | | (49) | | | After-Tax Cost Savings | | | _ | 34 | _ | 69 | | 70 | | 71 | | 73 | | | Less: Investment Necessary | | \$
(400) | | (5) | | (10) | | (11) | | (11) | | (11) | | | Plus: Disinvestment for Revenue | | | | 10 | | 5 | | | | - | | - | | | Subtotal | |
(400) | | 39 | | 63 | | 59 | | 61 | | 62 | | | Terminal Value | | ` ' | | | | | | | | | | 531 | | | Free Cash Flow | | \$
(400) | \$ | 39 | \$ | 63 | \$ | 59 | \$ | 61 | \$ | 593 | | | | | ¢.E.O. | | | | | | | _ | | | | | | Net Present Value of Cost Savings | | \$50 | | | | | | | | | | | | 17 | IRR Synergy Investment MIRR (CF) Note: discount @ cost of equity | | 18% |) | | | | | | | | _ | | Example of Co-Insurance # Merger Co-insurance Example (AD 25) Ex. Based on Ch. 30, Damodaran, p. 829 (Second Edition) Two companies merge | | Lube &
Auto | Gianni
Cosmetics | Combined | |--|--------------------------------------|--|---| | Firm Value | \$100 | \$150 | \$250 | | Debt Face Value | \$80 | \$50 | \$130 | | Debt Maturity | 10 | 10 | 10 | | St. Dev. Firm Value | 40.0% | 50.0% | 0.154 0.5 | | Share of assets in survivor Correlation b/n CFs | 0.4 | 0.6 | dul to
coinsurance,
t volatility
oes down. | | Option Price Values Equity Value in Firm | \$75.9 | from Black-5
: X = 80, 5 = 100, T=
\$134.5 | | | Debt Value in Firm Debt | $7reld = \left(\frac{80}{74}\right)$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | \$42.4 | Black-Scholes Option Pricing **Option Pricing Calculator** Calculat S 250 Current Asset Value 130 Exercise (Strike) Price 10.00 Time to Maturity (Years) 10.00% Riskless Interest Rate (%) 39.24% Volatility (% p.a.) 1.9533 0.7124 0.9746 0.7619 207.215 European Call Value (\$) 5.039 European Put Value (§) N.B.: option-pricing C. Harvey Combined Firm (O-Insurance Example Variance We discussed the financial synergies = $\frac{cov(r_A \cdot (T))}{6_A} \le 1$ $S_{AT} = \frac{\text{cov}(V_{A_1} \Gamma_T)}{\sigma_{r_A} \sigma_{r_T}}$ Calculating $$r_D$$ (YTM) for the co-insurance example # 42.78 = $\frac{130m}{1+r_D}$ = $\frac{10}{1+r_D}$ $\frac{10}{$ # Financial Synergy Calculation Equity (levered) beta asset beta (unlevered beta) $$\beta E = \beta A + D(1-T)(\beta A - \beta D)$$ (Hamada formula) asset financial risk The reverse, $$\beta E + \beta D D (1-T)$$ $$\beta A = \beta E + \beta D D (1-T)$$ $$\beta A = \beta E + \beta D D (1-T)$$ Valuing Financial Synergies $\int_{1+(1-T)^{\frac{D}{E}}\beta_{D}}^{\beta_{A}} = \frac{\beta_{E}+(1-T)^{\frac{D}{E}}\beta_{D}}{1+(1-T)^{\frac{D}{E}}}$ | | | | | | Target
(Before) | Buyer+Target
(Before) | | Newco | | Value
impact | |----|--|----|--------|--------|--------------------|--------------------------------|-----------------|-------|--------|-------------------------| | 1 | WACC before M&A | | 10.2% | 8.14 | 11.2% | | 10.7% | | | | | 2 | Newco WACC after M&A | | | | | | | | 10.1% | | | 3 | Total Capital Buyer+Target, before M&A | \$ | 6,000 | \$ | 6,000 | | 100 | \$ | 12,000 | | | 4 | Dollar Cost of Capital | \$ | 612 | \$ | 674 | \$ | 1,286 | \$ | 1,209 | \$77 | | 5 | Implied PV Financial Synergies | | | | | | | | | \$760 | | | Newco's Cost of Capital After M&A | | | | | | | | | (, | | 6 | Cost of Equity = | | 12.0% | | 15.5% | | | | 12.6% | >= | | 7 | Beta buyer, before M&A | | 1.00 | | | | | | | | | | Beta target, before M&A | | | | 1.50 | | | | | | | | Unlevered Beta $\beta_{\perp} = \beta_{F} / \left[1 + (1 - T) \frac{D}{R} \right] $ | | (0.83) |) | 1.01 | | | | 0.92 | 2 assum | | | Newco asset beta adj. because of | | | | | | | | | \ redu | | 10 | covariance unanticipated by market | | | | | | | | -0.10 | in asse | | 11 | Market value weight buyer (%) | 7 | 50% | | | | | , | | risk o | | 12 | Market value weight target (%) | | | | 50% | | re-levere | ٠ ا | | result | | 13 | Beta Newco $\beta_E - \beta_A$ $1 + (1 - T^*) \frac{D^*}{E^*}$ | | | | | < | | | 1.08 | result
the ac | | 14 | Risk-Free Rate | | 0.05 | | 0.05 | | | | 0.05 | | | 15 | Equity market risk premium | | 0.07 | | 0.07 | ****************************** | | v. 22 | 0.07 | | | 16 | Cost of equity CAPM | | 12.0% | | 15.5% | | | | 12.6% | | | 17 | Cost of Debt = | | 4.8% | | 6.0% | | r | | 5.4% | ass w
→ redu
of d | | | New rating Newco desired cap. structure | | AA | Water, | BBB | | | | A | -> redu | | | Debt maturity for desired cap. structure | | 7 | | 7 | | | | 7 | of d | | | Current pre-tax debt yields, @ Newco | | 4 | | | | | | | HSK | | 20 | rating & tenor | | 8.0% | | 10.0% | | Landing Auditor | | 9.0% | MAK | | | Marginal tax rate Newco | 1 | 40.0% | | 40.0% | | | | 40.0% | | | | After-tax cost debt Newco | | 4.8% | | 6.0% | | | | 5.4% | | | | Weights in desired capital structure Newco | | | | | | | | | | | 23 | Targeted weight debt (%) | | 25% | | 45% | | | | 35% | | | 24 | Targeted weight equity (%) | | 75% | | 55% | | Action | | 65% | | Unlevering of equity befas $$PA = \frac{PE}{1+(I-T)DE}$$ WACC = (1-T) PD E+D + PE D+E of the rest of debt CAPM: $$r = r_F + \beta_E \times MRP$$ $r = r_F + \beta_D \times MRP$ $r = r_F + \beta_A \times MRP$ $r = r_F + \beta_A \times MRP$ Optional: Levering & unlevering betas (Deriving the Hamada Formula) No loss of ### from firm to markets: > $\beta A * \frac{D+E-D*T}{D+E} + \beta D * \frac{D*T}{D+E} = \beta D \frac{D}{D+E} + \beta E \frac{E}{D+E} \Rightarrow with some algebra:$ $$\beta_{A} = \frac{\beta_{E} + (1-T) \frac{D}{E} \beta_{D}}{1 + (1-T) \frac{D}{E}}; \text{ in reverse, } \beta_{E} = \beta_{A} + \frac{D}{E} (1-T) (\beta_{A} - \beta_{D})$$ Value of Enabling Technology Technology (Real Option Valuation (Real Option Valuation Via Black - Scholes via Black - Scholes calculator) Cost of Implementation H120m (assets in place) + techology value # 29.6 m Bruner: Valuation of Exhibit # Valuing Real Option Synergies: B-S Eq $C = \left[N(d_1) \times S\right] - \left[N(d_2) \times PV(X)\right]$ $C = \left[N(d_1) \times S\right] - \left[N(d_2) \times PV(X)\right]$ $C = \left[N(d_1) \times S\right] - \left[N(d_2) \times PV(X)\right]$ $C = \left[N(d_1) \times S\right] - \left[N(d_2) \times PV(X)\right]$ | Val | e of technol | Constant yield, continuous dividend model | | |--------------------------|--------------|---|--------| | Call value (C) | \$29.6 | Call value (C) | \$28.1 | | Call delta (hedge ratio) | 0.736 | Call delta (hedge ratio) | 0.731 | | Using mut-call parity | | Using put-call parity | 7 | Put va \$227.9 Put value (P) -0.264 S underlying asset price (US\$ million) \$50.00 X exercise price (US\$ million) \$500.00 7.0% r_F risk-free rate 80.0% St. Dev. (volatility, σ) T years to expiration 10.0 | J Very PISE | y con now | |--------------------------------|----------------------| | Cumulative Stand | lard Normal Function | | d ₁ from Black-Scho | oles 0.631 | | ∑ N(d1) | 0.736 | | d ₂ from Black Scholes | (1.898) | |-----------------------------------|---------| | N(d2) | 0.029 | | Call delta (hedge ratio) | 0.731 | |--|---------| | Using put-call parity | | | Put value (P) | \$228.5 | | Delta | (0.269) | | S underlying asset price (US\$ million) | \$50.0 | | X exercise price (US\$ million) | \$500.0 | | r _F risk-free rate | 7.0% | | St. Dev. (volatility, σ) | 80.0% | | T years to expiration | 10.0 | | Dividend yield | 0.43% | | and the state of t | | | Cumulative Standard Normal Function | | | d ₁ from Black-Scholes | 0.614 | | N(d1) | 0.731 | ild a technology producing only \$50 m chance of CF Being higher! N(d2) d₂ from Black Scholes technology "throws 3 million # (1.915): 0.028 Liquidity & Control Illiquidity Control High Value of Control & Liquidity ## Valuing Control & Liquidity: Ch. 15 | | | - | | | |---------------------|------------|---------------|---------|-------------------| | Three acquisitions: | DCF=\$100m | SH. OUT= 100m | P = 1\$ | SECTION II | | Multiplicative model for control and liquidity | | | | | | |---|------|--------|-------------|----|--------| | Assumptions | | | | | | | % discount for illiquidity | | 30% | | | | | % premium for control | | 40% | | | | | Size of control block | 1 | 51% | | | | | Base Case VE: marketable & no control asymmetry | / \$ | 100 | | | | | Shares outstanding (#) | | 100 | | | | | | | Case A | Case B | (| Case C | | Illiquidity? | | no | yes | | yes | | Control Asymmetry? | | yes | no | | yes | | 1 Base Case V _E : liquid & no control asymmetry | \$ | 100.0 | \$
100.0 | \$ | 100.0 | | 2 Illiquidity Adjustment | | 0% | -30% | | -30% | | 3 Illiquidity-Adjusted VE | \$ | 100.0 | \$
70.0 | \$ | 70.0 | | 4 %Premium for control | | 40% | 0% | | 40% | | 5 Control Block Size | | 51% | 0% | | 51% | | 6 Control Block Value | \$ | 71.4 | \$ | \$ | 50.0 | | 7 Minority Block Value | \$_ | 28.6 | \$
70.0 | \$ | 20.0 | | 8 Adjusted V _E : control asymmetry & illiquidity | \$ | 100.0 | \$
70.0 | \$ | 70.0 | | 9 Control block price/share | \$ | 1.40 | \$
 | \$ | 0.98 | | 10 Minority block price/share | \$ | √ 0.58 | \$
0.70 | \$ | 0.41 | Baseline Scenario -> no control issues, no illiquitity Valuation of Private Companies: Cost of Capital $$\beta_{A}^{PRIV} = Total Beta = \frac{\beta_{A}}{\beta_{A}}$$ $$\frac{Cov(r_{A1}r_{M})}{\sigma_{r_{M}}} \leftarrow \frac{cov(r_{A1}r_{M})}{\sigma_{r_{A}}\sigma_{r_{M}}}$$ ## A Note on Special Purpose Acquisition Companies (SPACs) - SPAC is a "blank-check" company formed with the intention of acquiring or merging with another company. - The SPAC needs to complete an acquisition within two years or the capital raised must be returned to investors, as such it mostly represents a vote of confidence in the sponsor or investor behind the SPAC and in their ability to find future deals that would generate a high ROI. - In a typical SPAC structure, the sponsor raises initial capital by issuing units consisting of 1 share and ½ or ⅓ of a warrant. - The shares are generally priced at \$10 and the warrants are typically struck 15% out of the money (\$11.50) with a 5-year term and an \$18 forced exercise. - It comes with an embedded put option: Because the acquisition target is unknown at the time of the IPO, potential value creation is completely dependent on the ability of the sponsor to identify a target (typical private) company and negotiate the purchase. The SPAC purchase represents the de facto IPO for the acquired firm. However, in exchange for not knowing ahead of time the specific company that will be acquired, SPAC investors receive two benefits. - First, the right to evaluate the pending purchase and elect to hold or redeem the initial investment at cost (plus accrued interest) two days before the vote. - O Second, warrants. The decisions are separate. A SPAC investor may choose to retain both the shares and warrants, or redeem the shares and hold the warrants, or sell both. - The SPAC sponsor is typically compensated with a promote equal to 20% of pro forma equity and warrants. In a US SPAC, the sponsor's promote is not contingent upon meeting any financial targets. However, the sponsors of some recent SPACs have put their equity promote into an earn-out that is only received if the company achieves certain performance objectives, further aligning the financial incentives of the SPAC sponsor and shareholders. - European SPACs are structured slightly differently. First, since they lack a redemption feature, they are truly "blank check" firms. The European SPAC investor owns the shares regardless of whether the investor likes the acquisition or not. Second, the sponsor does not receive a 20% promote up front. Instead, the sponsor only earns a promote if the company achieves certain return targets. - Once the IPO is complete, and the SPAC sponsor now with millions in fresh funds in the bank finds a suitable target, he or she negotiates a non-binding term sheet. Depending on the size of the transaction, the sponsor may wall cross potential new outside investors to raise a PIPE (private investment in public equity). The transaction is then announced to the public and an 8-K is filed. - The SPAC investor base is highly fluid and as Goldman writes, many SPACs experience nearly a full rotation in their shareholder base during the time between the announcement of the deal and closing of the acquisition (transition from merger arbitrage traders and hedge funds to longer-term fundamental investors). - The sponsor will then file a proxy with the SEC, conduct a pre-merger roadshow, receive redemption notices (if any), and hold a shareholder vote. Redemption notices are due 2 days prior to the shareholder vote, and shareholders will typically determine whether or not to redeem based on where shares are trading at the time redemption notices are due. If the vote passes, the SPAC merges with the target company and will often undergo a ticker change to reflect the name of the target business. - On the other hand, if the vote fails, the sponsor will resume searching for a suitable target. After 24 months from the capital raise the SPAC will be closed and the capital returned to investors if a merger has not been completed. ### Benefits of SPACs: - First, in the traditional IPO process, issuers are prohibited from including any forward-looking guidance in their Form S-1 registration. - As a result, prospective investors are required to evaluate the merits of an issue based on backward-looking results and their own expectations. - In contrast, the SPAC due diligence process allows a target company to present forecasts and enhances the ability of a SPAC to acquire early-stage companies or those with complicated business models. This can be useful in businesses like sports betting, cannabis, electric vehicles, or other nascent industries that lack meaningful comparisons in the traditional IPO market. Of course, it is a given that the target company will present the most optimistic projections to potential investors, which is why removing the investor diligence aspect of the process is usually a sign of complacent groupthink whereby the investor base is willing to believe anything the target company presents similar to how i) rating agencies assessed all pre-crisis debt as stellar even if it was generally garbage and ii) investors are willing to engage in groupthink when someone else does their "diligence" job for them. - o Second, in a traditional IPO, the amount of new capital raised is limited, typically to 20%-25% of the value of a company. But in a SPAC transaction, no limit exists on potential proceeds. A SPAC may acquire a majority or minority interest in the target firm and the concurrent PIPE capital raise may be any size. ## Make-up Quiz #3 (Week #3) for EMAD 5442 Question #1 (1 pts) You are presented with a cost synergy of 10 million, starting a year after the merger. The cost of debt is 12%, the cost of asset capital is 10% and the cost of equity capital is 15%. If the cost savings = 7/ are perpetual and starting next year, what is the present value of the cost synergy? A. \$142.86 million = \$10 million / 0.07 B. \$100 million = \$10 million / 0.10 C. \$93.75 million = \$10 million / [(7%+10%+15%)/3] D. \$66.67 million = \$10 million / 0.15 Question #2 (1 pts) √ Please use the Excel file "Topic #3 (Real Option Synergies Valuation) (Ch11).xlsx" – posted on Canvas – to solve this question. A company possesses a growth opportunity (a patent) with the following parameters: (1) present value of the expected cash flows form the new technology is \$300 million; (2) in order to implement it the company must inves \$400 million; (3) the patent protection is for 10) years; and (4) the uncertainty about the returns from the project is 40%. If the risk-free rate is 2% what is the value of this growth opportunity? - A. \$300 million - B. \$239.4 million - C. \$134.9 million - D. \$120 million Question #3 (1 pts) Please use Excel file "Topic #3 (Co-Insurance Example).x/sx" - posted on Canvas - to solve this question. In the Gianni Cosmetics and Lube & Auto merger, what will be the yield associated with debt of combined firm if correlation of cash flows of Gianni & Lube is 13 A. 10.5% B. 11.75% ✓ C. 12.71% D. 14.3% **√**Question #4 (0.5 pts) Please use Excel file 'Topic #3 (Liquidity and Control) (Ch15).xlsx" to solve this question. In the class example of a public company going through a leveraged buyout to become private (i.e., Case C), what will be the price of the minority shares if the illiquidity discount is 10% and the control premium is 90%. Please assume that the control block size is 51%. - A. 41 cents per share - B. 15 cents per share - C. 10 cents per share - D. 6 cents per share Question #5 (0.5 pts) Cost synergies are riskier than revenue enhancement synergies. - A. True - B. False