
1. Introduction
For decades, climate scientists have been aware of the relationship between temperature and greenhouse gases, 
and have attributed increasing concentrations of these gases (e.g., carbon dioxide, methane) to human activ-
ity (Callendar, 1938). Over that time, many studies have verified the positive relationship between GHGs and 
global mean temperature and precipitation (Hartmann, 2015). However, regional responses to climate change 
have been found to be more complex and variable (Pachauri et al., 2014). Compounding this issue, atmospheric 
processes pertinent to regional climate are not resolved by global climate models (GCMs) due to their relatively 
sparse computational grids (Prein et  al.,  2015). The initiation and maintenance of thunderstorms, for exam-
ple, relies heavily on meso-γ (∼10 km) scale processes—which is an order of magnitude smaller than typical 
GCM grids—related to land cover, terrain, moisture flux, and transient baroclinity (Trapp, 2013). Since thun-
derstorms are affiliated with numerous benefits and hazards, climate modeling that more accurately simulates 
thunderstorms and potential changes in their frequency is of interest to society. Thus, climate change research has 
incorporated  an increasingly local perspective over the past decade by explicitly simulating mesoscale processes 
(Kendon et al., 2021; Prein et al., 2015; Takayabu et al., 2021).

Regional thunderstorm activity can be implicitly approximated in coarse resolution GCMs by examining varia-
bles like convective available potential energy (CAPE; J kg −1) and convective inhibition (CIN; J kg −1). Using an 
ingredients-based approach (Brooks et al., 2003; Doswell & Schultz, 2006; McNulty, 1995), these variables are 
used as proxies of atmospheric conditions that may be favorable for thunderstorm development (herein, thunder-
storm environments). The body of literature on thunderstorm environments in reanalysis datasets is substantial 
(Allen, 2018; Brooks, 2013; Brooks et al., 2019; Gensini et al., 2014). Trends in thunderstorm environments have 
also been examined at length, both in reanalysis datasets (Gensini & Brooks, 2018; Riemann-Campe et al., 2009; 
Tang et al., 2019; Taszarek, Allen, Brooks, et al., 2021; Taszarek, Allen, Marchio, & Brooks, 2021) and GCM 
output (Diffenbaugh et al., 2013; Lepore et al., 2021; Trapp et al., 2009; Trapp, Diffenbaugh, et al., 2007). In 
general, these studies have reported either observed or projected increases in instability over time, which suggests 
an attendant increase in thunderstorm activity in the 21st century (Gensini, 2021). However, a crucial limitation 
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of these works is that GCMs and other coarse resolution models cannot resolve individual thunderstorms and 
important mesoscale processes that lead to their development (Kendon et al., 2021).

Higher resolution climate simulations, conducted using a process called dynamical downscaling (Trapp, Halvorson, 
& Diffenbaugh, 2007), instead use GCM output as initial and boundary conditions to inform a regional climate 
model (RCM). RCMs with a grid spacing of ≤4 km permit explicit simulations of convective processes (Prein 
et al., 2015; Weisman et al., 1997), and individual thunderstorms can be identified in the resulting model output. 
While global domains at these resolutions are rapidly becoming more feasible (Gensini & Mote, 2014; Kendon 
et al., 2021; Trapp et al., 2011), high computational and storage demands have limited the temporal and spatial 
scope of these simulations. Existing experiments have study periods of 10–30 years, subcontinental domains, and 
use one GCM and/or climate change scenario. However, these studies have provided more details about potential 
changes in thunderstorm activity (Gensini & Mote, 2015; Hoogewind et al., 2017; Rasmussen et al., 2020; Trapp 
et al., 2019). For example, Rasmussen et al. (2020) illustrates potential limitations of thunderstorm environment 
studies—namely, despite the widespread increases in CAPE, there was a spatially varied response in thunder-
storm activity. However, these disparities may be due to reported model biases (Liu et al., 2017).

2. Experiment Setup
Initial and boundary conditions for the RCM are informed by a bias-corrected (Bruyère et  al.,  2014) and 
regridded version of the Community Earth System Model (CESM; Hurrell et al.  [2013]) output. Specifically, 
6-hourly output from 1990 to 2005 and 2085 to 2100 are accessed for this work (Monaghan et al., 2014). For 
the end-of-21st-century period, we use bias-corrected CESM data for Representative Concentration Pathway 
(RCP; Moss et al., 2010) 4.5 and 8.5. The goal of using two RCPs is to examine and compare regional responses 
to an intermediate (RCP 4.5) and extreme (RCP 8.5) climate change scenario. These three periods are passed 
into WRF-ARW version 4.1.2 (Skamarock et al., 2019), and the corresponding 15-year simulations are run on 
a domain fully containing the conterminous United States (CONUS). The RCM uses a grid point spacing of 
3.75 km, which permits the model to explicitly simulate deep, moist convective systems and other mesoscale 
processes important for thunderstorm development and sustenance (Kendon et al., 2021). 15 hydrologic years 
(1 Oct - 30 Sep) are simulated with continuous integration for each of the three periods—with spectral nudging 
(Miguez-Macho et al., 2004) of large (∼2,000 km) features every 6 hr—resulting in hourly data output from 45 
total simulations. Herein, the groups of simulations are referred to as HIST (1990–2005), FUTR 4.5 (2085–2100, 
RCP 4.5), and FUTR 8.5 (2085–2100, RCP 8.5). More information on this approach can be found in Gensini 
et al. (2022). This work will examine CAPE, CIN, and the spatiotemporal frequency of days with thunderstorms 
to reveal what, if any, differences exist between simulations representing a retrospective period and two possible 
future climate change scenarios.

3. Quantifying Thunderstorm Activity
Remote sensing platforms are commonly used to detect the occurrence of thunderstorms. These platforms include 
lightning locating systems (Cummins & Murphy, 2009), geostationary satellites (Menzel & Purdom, 1994), and 
radar (Serafin & Wilson, 2000). NEXRAD—the current weather radar platform in the United States—has been 
used for decades to detect thunderstorms for operational (Serafin & Wilson, 2000) and climatological (Fabry 
et al., 2017) applications. For the purposes of this study, model derived radar reflectivity factor (herein, simulated 
reflectivity) is used as a surrogate for the observed reflectivity data product provided by NEXRAD (Klazura & 
Imy, 1993). Simulated reflectivity produced by WRF is calculated using the simulated density of hydrometeors 
at a particular model level and time step (Creighton et al., 2014; Stoelinga, 2005), and this is analogous to the 
process used by NEXRAD. That said, disparities between simulated and observed reflectivity exist, and may be 
caused by different vertical and horizontal grid spacing, model assumptions about the shape and phase of hydro-
meteors (Stoelinga, 2005), and by noise and range-based issues experienced by NEXRAD (Smith et al., 1996). 
Despite these issues, previous work has used simulated reflectivity to examine changes in thunderstorm activity 
in a convection-allowing climate modeling context (e.g., Rasmussen et al., 2020; Trapp et al., 2019).

Three thresholds—40, 50, and 60 dBZ—are applied to the hourly simulation data to capture various intensities 
of simulated thunderstorm activity. The 40 dBZ threshold is commonly used for detecting thunderstorms in 
observed and simulated radar reflectivity (Fabry et al., 2017; Gensini & Mote, 2015; Parker & Knievel, 2005; 
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Trapp et al., 2019), whereas 50 and 60 dBZ values are associated with stronger thunderstorms and the potential for 
hail (Ashley et al., 2012; Blair et al., 2011; Gensini & Mote, 2015; Ortega, 2018). The hourly data are then aggre-
gated into days starting and ending at 12:00 UTC to calculate “thunderstorm day” (Changnon & Changnon, 2001; 
Trapp et al., 2019), herein “grid day,” frequencies. Each analysis grid of 80 × 80 km (Figure 1; grid size used by 
NOAA for severe thunderstorm verification) is considered to have experienced a grid day if at least one 40 dBZ 
value occurred within its boundaries, and this process is repeated for the 50 and 60 dBZ thresholds. HIST, FUTR 

Figure 1. Mean annual grid days (starting at 12:00 UTC) for simulated reflectivity factor exceeding (a–c) 40 dBZ, (d–f) 50 dBZ, and (g–i) 60 dBZ. Absolute days are 
reported for HIST (a, d, and g) and differences relative to HIST are reported for (b, e, and h) FUTR 4.5, and (c, f, and i) FUTR 8.5. Significant differences between 
HIST and the respective FUTR period are denoted by stippling (p < 0.05; Mann-Whitney U test). Regions of interest are identified in (a), and include (i) the Contiguous 
United States east of the continental divide (ECONUS; black outline), and 16 grid cells near (ii) Minneapolis, MN, (iii) Amarillo, TX, and (iv) Memphis, TN.
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4.5, and FUTR 8.5 mean annual and seasonal frequencies are then calculated by aggregating grid day results into 
their respective 15 year periods. To further examine annual cycles in grid day frequencies, grids are stratified into 
four regions identified in Figure 1a—namely, the eastern CONUS (961 grid cells), and 16-grid clusters centered 
on three cities (Minneapolis, MN; Amarillo, TX; and Memphis, TN). The study region is focused on areas of 
the CONUS east of the continental divide because this is where most U.S. thunderstorms (Changnon, 2001) and 
particularly intense/severe thunderstorms (Gensini & Ashley, 2011; Taszarek et al., 2020) occur. The results of 
the regional analyses are reported as regional means by dividing the sum of grid days within all regional grid cells 
by the count of grid cells within each region.

4. Changes in Thunderstorm Days
For all thresholds tested, mean annual grid days from HIST are generally highest in the southeast and decrease 
toward the north and west (Figure 1). For the eastern CONUS, HIST mean annual grid days range from 50 to 150 
for 40 dBZ, whereas 60 dBZ grid days range from <1 to 25 per year. HIST 50 dBZ grid days range from 90 in 
Florida to 15 per year in the Northern Plains, and the spatial patterns and magnitudes are similar to observations 
of days with thunder (Changnon & Changnon, 2001) and lightning (Koehler, 2020). The correlation between 
higher grid day counts and distance to the Gulf is stronger for the 50 and 60 dBZ thresholds, whereas 40 dBZ 
grid days for the eastern Rocky Mountains occur just as often as parts of the Mississippi River Valley. The spatial 
pattern of 60 dBZ grid days matches those reported by studies that have examined extreme (i.e., return intervals 
≥50 years) 1-hr rainfall totals (Stevenson & Schumacher, 2014).

For both FUTR 4.5 and FUTR 8.5, there is a significant decrease in 40 dBZ grid days in the Southern Plains. For 
both scenarios, broad areas of Texas, Oklahoma, and New Mexico experience at least five fewer 40 dBZ grid days 
per year in FUTR 4.5 and 10–15 fewer grid days per year in FUTR 8.5. In contrast, most changes are not signif-
icant over Florida and coastal regions of the Carolinas in FUTR 4.5, but they are in FUTR 8.5, with differences 
similar to those in Texas. In both scenarios, a marked north/south dichotomy exists across the eastern CONUS, 
with attendant increases of 40 dBZ grid days over the Northern Plains, Midwest, and Northeast. Interestingly, 
significant differences are limited to parts of the Northeast in RCP 4.5, whereas they are more widespread across 
the Northern Plains and northern Mississippi River Valley in FUTR 8.5. The largest changes are seen in FUTR 
8.5, where five to 15 more 40 dBZ days are projected over parts of the Great Lakes, Northern Plains, and North-
east. For the higher thresholds, many areas east of the High Plains experience a significant increase in grid days, 
particularly in FUTR 8.5. In contrast, the High Plains generally see no significant changes, or significantly fewer 
days. Interestingly, parts of the southern and eastern Plains experience significant increases in 60 dBZ days, while 
experiencing significantly fewer 40 dBZ days. The Tennessee, Ohio, and Upper Mississippi River Valleys exhibit 
increases of three to over nine 50 dBZ grid days per year, whereas Texas and Florida may experience decreases 
in grid days of similar magnitudes. For 60 dBZ, the significant decreases in Texas and Florida largely disappear, 
whereas the areas of significant increases in 50 dBZ grid days are expanded southward and westward. Notably, 
portions of the Mid-South experience increases of up to six or more 60 dBZ grid days per year in both FUTR 4.5 
and FUTR 8.5.

The cumulative annual sum of grid days within each region is calculated to compare year-to-year differences 
between regions and climate change scenarios relative to HIST. These values are reported as the mean cumulative 
annual grid days by dividing this sum by the count of grids within each region (Figure 2). For the eastern CONUS 
(Figures 2a–2c), the count of 40 dBZ grid days per year is similar for HIST, FUTR 4.5, and FUTR 8.5, with mean 
differences of less than one day per year. For the higher thresholds, mean yearly grid day counts for HIST are 
43.9 days for 50 dBZ and 10.6 days for 60 dBZ. On the other hand, 50 (60) dBZ mean grid days are 45.3 (12.1) 
and 46.6 (13.7) per year for RCP 4.5 and RCP 8.5, respectively. This pattern was not consistent across the eastern 
CONUS. For example, Minneapolis (Figures 2d–2f), on average, experiences over six more 40 dBZ grid days per 
year in FUTR 8.5 compared to HIST, whereas Amarillo (Figures 2g–2i) experiences 12 fewer 40 dBZ grid days 
per year in FUTR 8.5. In contrast with Minneapolis, ECONUS, Amarillo, and Memphis all experience decreases 
in 40 dBZ days in both FUTR 4.5 and FUTR 8.5. For higher thresholds, the responses to the climate change 
scenarios are more complex. For Minneapolis, the mean annual 50 and 60 dBZ grid days are similar for HIST 
and FUTR 4.5, but higher for FUTR 8.5. On the other hand, mean annual 60 dBZ grid day counts for HIST and 
FUTR 8.5 are higher than FUTR 4.5 for the Amarillo region. The most dramatic differences between lower and 
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Figure 2. Cumulative annual sum of mean grid day (starting at 12:00 UTC) counts for grid cells in the regions identified in Figure 1—namely: (a–c) ECONUS, (d–f) 
Minneapolis, MN, (g–i) Amarillo, TX, and (j–l) Memphis, TN. Day counts are stratified into those with simulated reflectivity factor exceeding (first column) 40 dBZ, 
(second column) 50 dBZ, and (third column) 60 dBZ. Annual means (lines) and 25th to 75th percentile range (filled) are delineated for HIST (light green), FUTR 4.5 
(blue), and FUTR 8.5 (dark red). Mean grid day counts are calculated by dividing the sum of grid days in a region by the regional grid cell count (i.e., 961 for ECONUS 
and 16 for Minneapolis, MN, Amarillo, TX, and Memphis, TN).
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higher thresholds are illustrated in the Memphis region (Figures 2j–2l), where FUTR 4.5 (FUTR 8.5) produces 
4.3 (7.4) more mean annual 60 dBZ grid days compared to HIST.

To examine sub-annual variability, regional mean grid day counts are stratified by season (Figure 3). For the 
eastern CONUS (Figures 3a–3c), there were increases (some significant) in grid days during the winter (DJF), 
spring (MAM), and fall (SON) for FUTR 4.5 and FUTR 8.5, whereas there were robust decreases during the 
summer (JJA). For DJF, significantly more 40 dBZ grid days are noted in both FUTR 4.5 (+1.7) and FUTR 8.5 
(+2.7). There were significantly more MAM 50 dBZ grid days (+1.4 in FUTR 4.5 and +2.1 in FUTR 8.5) and 60 
dBZ grid days (+0.7 in FUTR 4.5 and +1.4 in FUTR 8.5). Conversely, Significant decreases in JJA 40 dBZ grid 
days relative to HIST exist in both FUTR 4.5 (−3.5) and FUTR 8.5 (−5.8). This is also the case for JJA 50 dBZ 
grid days, of which there are 1.5 fewer days in FUTR 4.5 and 2.6 fewer days in FUTR 8.5, while there are only 
significantly more JJA 60 dBZ grid days for FUTR 8.5 (+0.7).

The largest and most robust changes across all regions and seasons occurred in the Memphis grid cluster 
(Figures 3j–3l) during MAM. Both FUTR 4.5 and FUTR 8.5 produced significantly more MAM 50 dBZ grid 
days (+3.2 and +5.3, respectively) and MAM 60 dBZ grid days (+2.4 and +4.2, respectively). In fact, for the 
Memphis cluster, there were almost twice as many MAM 60 dBZ grid days in FUTR 8.5 (8.7) compared to HIST 
(4.5). On an annual basis, MAM increases for the Memphis cluster are partially offset by decreases (none signif-
icant) in FUTR 4.5 and 8.5 during JJA for both 40 dBZ grid days (−3.3 and −6.8, respectively) and 50 dBZ grid 
days (−1.8 and −4.4, respectively), while JJA 60 dBZ grid day counts show small positive changes for FUTR 
4.5 (+0.4) and FUTR 8.5 (+0.2). For the 16 grids centered on Minneapolis (Figures 3d–3f), there was little or no 
change under FUTR 4.5. However, under FUTR 8.5, MAM and SON counts of days with 50 dBZ occurrences 
(+2.3 and +3.1, respectively) and 60 dBZ occurrences (+1.5 and +1.3, respectively) increased significantly. The 
Amarillo grid cluster (Figures 3g–3i) experiences significant DJF decreases in 40 dBZ grid days (−2.4), 50 dBZ 
grid days (−0.6), and 60 dBZ grid days (−0.04) for FUTR 4.5, but no significant differences for FUTR 8.5.

5. Changes in CAPE and CIN
Since conditional instability is an ingredient necessary for thunderstorm formation (McNulty,  1995), mean 
seasonal MU (most unstable layer in the lowest 180  hPa) CAPE and MU CIN (herein, MU CAPE and MU 
CIN) are compared between HIST and the two climate change scenarios (Diffenbaugh et al., 2013). The “most 
unstable” versions of these measures of stability are used to account for both surface-based and elevated thun-
derstorm activity (Geerts et al., 2017). Study region MU CAPE values for HIST are lowest in DJF (0 to over 
50 J kg −1) and highest in JJA (50 to over 300 J kg −1), and are comparable to results presented in previous works 
(Chen et al., 2020; Gensini & Ashley, 2011; Rasmussen et al., 2020; Taszarek, Allen, Brooks, et al., 2021; Trapp, 
Diffenbaugh, et al., 2007). Regionally, MU CAPE maximizes along the Gulf of Mexico and decreases toward the 
north and west. MU CIN, however, maximizes in the Great Plains, likely driven by the regular advection of an 
elevated mixed layer from the western United States (Trapp, 2013).

For all seasons in both climate change scenarios, the study region generally experiences increases in MU CAPE, 
and increases are larger in FUTR 8.5 compared to FUTR 4.5. The largest changes in MU CAPE occur in JJA 
(Figures 4g–4i), where areas of the Mid-South experience changes of ≥100 J kg −1 in FUTR 4.5, and ≥200 J 
kg −1 in FUTR 8.5 by the end of the century. This area is part of an axis of relatively large changes in MU CAPE 
from the Dakotas to the Carolina coast in both climate change scenarios. The June–August period is also when 
MU CIN exhibits the largest increases, with areas of the Northern Plains and Midwest experiencing changes of 
≤−25 J kg −1 in FUTR 4.5. For FUTR 8.5, however, the vast majority of ECONUS experiences changes in MU 
CIN of ≤−25 J kg −1, with some parts of the Great Plains experiencing changes in MU CIN of ≤−50 J kg −1. The 
largest changes in MU CAPE during the MAM period (Figures 4d–4f) occur in southern Texas (≥150 J kg −1) and 
the Mid-South (≥50 –≥ 100 J kg −1). However, MU CIN changes of ≤−25 J kg −1 and ≤−50 J kg −1 are confined to 
the Southern Plains. DJF (Figures 4a–4c) and SON (Figures 4j–4l) exhibit more modest changes in MU CAPE, 
with fall increases in FUTR 4.5 (FUTR 8.5) ranging from 1 to 50 J kg −1 (1–150 J kg −1), and winter increases in 
FUTR 4.5 (FUTR 8.5) up to 25 J kg −1 (50 J kg −1). These results suggest that observed increases in both CAPE 
and CIN (Taszarek, Allen, Brooks, et al., 2021) may continue during the 21st century.
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Figure 3. As in Figure 2, except regional distributions of seasonal grid days during 15 respective simulation years (HIST, FUTR 4.5, and FUTR 8.5) for: (a–c) 
ECONUS, (d–f) Minneapolis, MN, (g–i) Amarillo, TX, and (j–l) Memphis, TN. Boxes represent the interquartile range, dots within the boxes are the means, lines 
within the boxes are medians, whiskers represent the 5th to 95th percentile range, and outliers denoted by unfilled circles. Significant differences—determined by 
a p-value less than 0.05 using the Mann-Whitney U test—between HIST and FUTR 4.5 (FUTR 8.5) are denoted by black diamonds (squares) above the maximum 
outliers.
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6. Discussion and Conclusions
Although the response of thunderstorm activity to intermediate and extreme climate change scenarios was signif-
icant across the ECONUS for the vast majority of seasons and thresholds examined, regional changes varied. In 
general, most of the ECONUS saw significant decreases or no changes in annual 40 dBZ grid days. However, 
as the threshold was increased to 50 and 60 dBZ, most of the ECONUS saw either significant increases or no 

Figure 4. Mean seasonal MU CAPE (filled) and MU CIN (hatched) for HIST (first column), and mean seasonal changes in MU CAPE and MU CIN (relative to HIST) 
for FUTR 4.5 (second column) and FUTR 8.5 (third column). Hatches for mean seasonal MU CIN (left column) and changes (relative to HIST) in mean seasonal MU 
CIN (center and right columns) of <−25 J kg −1 and <−50 J kg −1 are denoted by lines and crosses, respectively. MU CIN is only considered if it is co-located with MU 
CAPE ≥100 J kg −1.
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changes in annual grid days. Notably, significant increases in annual thunderstorm activity were observed despite 
decreases (some significant) during the summer, which is the current peak of annual thunderstorm activity in the 
ECONUS (Changnon, 2001). Seasonal and regional analyses (Figure 3) revealed an overall increase in winter 
(Figure S1 in Supporting Information S1), fall (Figure S4 in Supporting Information S1) and spring (Figure S2 in 
Supporting Information S1) thunderstorm activity which appears to offset decreases during the summer (Figure 
S3 in Supporting Information S1) in FUTR 4.5 and 8.5. Potential seasonal shifts in the frequency of 40 dBZ grid 
days at the end of the century generally agree with those presented in existing literature (Rasmussen et al., 2020; 
Trapp et al., 2019). The results from higher thresholds (i.e., 50 and 60 dBZ) follow the hail-focused results in 
Trapp et al.  (2019), and suggest that hail-specific variables from HIST, FUTR 4.5, and FUTR 8.5 should be 
examined in future work.

Cumulative mean thunderstorm days for the ECONUS were similar for 40 dBZ grid days in HIST, FUTR 4.5, 
and FUTR 8.5 (Figure 2a). However, at the higher thresholds of 50 and 60 dBZ (Figures 2b and 2c), both FUTR 
4.5 and 8.5 produced more annual grid days. Further, there were more 50 and 60 dBZ grid days in FUTR 8.5 
compared to FUTR 4.5. This pattern was not consistent within the examined sub regions. For example, Amarillo 
grids experienced fewer 40 and 50 dBZ grid days (Figures 2g and 2h) in FUTR 8.5 compared to both HIST 
and FUTR 4.5, which is the opposite of what occurred within the ECONUS as a whole. Minneapolis grids 
showed few differences between HIST and FUTR 4.5 for all thresholds, but experience more days in FUTR 8.5 
(Figures 2d–2f), suggesting a step change in thunderstorm activity when the change in radiative forcing exceeds 
that produced by FUTR 4.5. Memphis grids largely mirrored the ECONUS results, except for larger relative 
differences in annual 50 and 60 dBZ grid days between HIST and the two climate change scenarios.

Seasonal comparisons between regions revealed varied responses to the two climate change scenarios. Overall, 
ECONUS grids experienced summertime decreases in 40 and 50 dBZ days, while seeing more 60 dBZ days 
(Figures 3a–3c). In contrast, fall, winter, and spring produced more 40, 50, and 60 dBZ grid days. As was the 
case with cumulative mean thunderstorm days, the examined regions did not always follow the same pattern. 
While Memphis (Figures 3k–3l) and Minneapolis (Figures 3d–3f) grids experienced increases in grid days during 
the spring, Amarillo (Figures 3g–3i) experienced decreases. Both Memphis and Minneapolis grid clusters had 
significant increases in 40, 50, and 60 dBZ grid days during the winter and fall. Interestingly, the smallest changes 
occurred during the summer for Amarillo, Memphis, and Minneapolis grids. This period also produced the most 
variability, as evidenced by the large interquartile ranges relative to other seasons. The results suggest the poten-
tial of a modified seasonal cycle of thunderstorm activity by the end of the 21st century. Memphis, for example, 
experiences a peak in 40, 50, and 60 dBZ grid day counts during the spring in future climate change scenarios, 
whereas HIST grid day counts peaked during the summer. On the other hand, Amarillo grids experienced a 
dampened seasonal cycle—namely, even though grid day counts peaked in the summer for HIST and the two 
climate change scenarios, the peak is lower than the one produced by HIST in both FUTR 4.5 and 8.5.

The varying responses of 40, 50, and 60 dBZ grid days to climate change scenarios are in line with results from 
works that have examined realized and possible changes in the character of rainfall (Brown et al., 2019; Prein 
et al., 2017; Trenberth et al., 2003) and hail (Trapp et al., 2019). Changes in MU CAPE and MU CIN (Figure 4) 
could be a driver of these changes—namely, the suppression of deep, moist convection becomes more likely 
as MU CIN increases, while larger MU CAPE results in more vigorous deep, moist convective updrafts when 
CIN is overcome (Trapp, 2013). Evidence supporting this hypothesis can be seen in the difference between late 
21st century changes in 40 and 60 dBZ grid days. For all seasons and regions examined, 60 dBZ grid days are 
more common in the two end-of-century climate change scenarios, with many of these changes significant. And 
although 40 dBZ grid days generally increase or remain stationary for fall, winter, and spring, every region exam-
ined experienced decreases during the June - August period. The decreasing frequency of 40 dBZ grid days may 
be in response to a stronger capping during the summer, which may be the result of an increasingly arid western 
United States in FUTR 4.5 and 8.5 (Seager et al., 2018; Ting et al., 2018). Future work should explicitly examine 
the climatology of elevated mixed layers during the warm season to determine if these events are happening more 
often and are associated with stronger capping.
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Data Availability Statement
The bias-corrected CESM data is archived at the following link: https://doi.org/10.5065/D6DJ5CN4. The code 
and data used for this work can be found at https://doi.org/10.5281/zenodo.6624592.
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