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ABSTRACT: The 100th meridian bisects the Great Plains of the United States
and effectively divides the continent into more arid western and less arid eastern
halves and is well expressed in terms of vegetation, land hydrology, crops, and the
farm economy. Here, it is considered how this arid–humid divide will change in
intensity and location during the current century under rising greenhouse gases. It
is first shown that state-of-the-art climate models from phase 5 of the Coupled
Model Intercomparison Project generally underestimate the degree of aridity of
the United States and simulate an arid–humid divide that is too diffuse. These
biases are traced to excessive precipitation and evapotranspiration and inadequate
blocking of eastward moisture flux by the Pacific coastal ranges and Rockies.
Bias-corrected future projections are developed that modify observationally based
measures of aridity by the model-projected fractional changes in aridity. Aridity
increases across the United States, and the aridity gradient weakens. The main
contributor to the changes is rising potential evapotranspiration, while changes in
precipitation working alone increase aridity across the southern and decrease
across the northern United States. The ‘‘effective 100th meridian’’ moves to the
east as the century progresses. In the current farm economy, farm size and percent
of county under rangelands increase and percent of cropland under corn decreases
as aridity increases. Statistical relations between these quantities and the bias-
corrected aridity projections suggest that, all else being equal (which it will not
be), adjustment to changing environmental conditions would cause farm size and
rangeland area to increase across the plains and percent of cropland under corn to
decrease in the northern plains as the century advances.

KEYWORDS: North America; Vegetation–atmosphere interactions;
Hydrometeorology; Agriculture

1. Introduction
The 100th meridian was conceptualized by the nineteenth-century explorer, sci-

entist, and director of the U.S. Geological Survey and Bureau of Ethnology John
Wesley Powell as the clearly demarcated divide between America’s arid west and
humid east (Powell 1879, 1890). In Part I of this two-part paper, we showed the
validity of this conceptual divide in terms of a sharp zonal gradient in aridity across
the Great Plains, elucidated the physical processes in the atmosphere that establish the
aridity gradient, and examined how it is expressed in terms of land surface hydrology
and vegetation and, finally, how it is realized in terms of the agricultural economy. It
was found that, on all scores, the 100th meridian does indeed represent a divide in the
physical character and social and economic structure of the central United States.
Powell used the 100th meridian to argue that plans for settlement and development of
the arid land west of the meridian should be different to those applied to the East and
be very conscious of the constraints imposed by aridity and the need for irrigation in
the presence of limited water availability. While his ideas were largely ignored
(Stegner 1954), apparently it is nonetheless the case that environmental conditions did
influence the land development and use over the period since Powell.

The 100th meridian as the arid–humid divide was a description of the late-
nineteenth-century climate and landscape that has remained valid at least into the
beginning of this century. But now climate change caused by rising greenhouse gases
from fossil fuel burning is advancing. Based on the most recent climate model pro-
jections from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and
analyzed by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
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Report (AR5), many workers have reported that North America will see, over the
coming decades, a marked transition in hydroclimate. Precipitation is expected to
decline in southwestern North America but increase in the northeast, and temperature
will rise everywhere (Seager et al. 2013; Maloney et al. 2014; Seager et al. 2014).
Cook et al. (2015) used the CMIP5 model ensemble to show that these changes
combine to cause a quite alarming increase in aridity in the plains as measured either
by the Palmer drought severity index (utilizing the Penman–Monteith formulation
for potential evapotranspiration) or in the actual modeled soil moisture. Under such
climate change we would expect the modeled arid–humid divide to move or the
‘‘effective 100th meridian’’ to advance eastward. Given that the aridity gradient is
expressed in the agricultural economy, this could necessitate farms to adapt to new
environmental conditions, by consolidation and changes in crops grown, for example,
or risk becoming unprofitable. Disruption could be minimized if the climate changes
and agricultural economic implications were anticipated in advance.

To project the future we need models. These can range greatly in complexity, but
for future climate change the best guidance comes from the coupled atmosphere–
ocean–land–sea ice models of the CMIP5. Here in Part II, we will use the CMIP5
models to compute projections of the change in aridity and aridity gradient for the
next century. However, we should never use these models blindly, and instead we
should be fully aware of model biases and limitations. Often a ‘‘bias correction’’ is
needed and one will be applied here to estimate the future aridity index. We will then
use simple relations between aspects of the agricultural economy and the aridity index
to suggest the implications of the changes in climate. The work suggests that the
100th meridian in effect moves steadily east. The physical reasons for why this is so
will be determined. The implications are that, all else being equal (which it will not
be), cultivation of wheat and rangelands will expand east at the expense of corn and
that farm size will need to increase to reflect the new climate and land productivity.

2. Observational and climate model data
To compare the models against observations, we use data from the National Land

Data Assimilation System 2 (NLDAS-2). The following text follows that in Part I.
NLDAS-2 is a land surface model based on land surface hydrology models driven by
atmospheric data (Xia et al. 2012a,b) available online (at http://ldas.gsfc.nasa.gov/
index.php; last accessed September 2017). Land surface models are physical models
of the upper part of the land surface that solve equations for transfer of heat and
moisture between the surface and the deeper layers and that also contain a repre-
sentation of vegetation and interactions between it, the atmosphere, and the soil
below. The land surface models are forced by imposed air temperature, humidity,
winds, surface radiation, and other quantities. In this case atmospheric data from the
National Centers for Environmental Prediction (NCEP) North American Regional
Reanalysis (NARR) reanalysis (Mesinger et al. 2006) are used in combination with
precipitation data developed by the PRISMClimate Group at Oregon State University
[details of which can be found at http://www.prism.oregonstate.edu and in Daly et al.
(2000)]. The data period covers 1979 to 2015, and the spatial resolution is 1/88 in
latitude and longitude. The atmospheric data were used by NLDAS-2 to force three
different land surface models, Mosaic, VIC, and Noah, but, for brevity, as in Part I, we
only present results using the Noah model. For farm economy we examined type of
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agricultural use, crops grown, and farm numbers and size using the USDA/National
Agriculture Statistics Service 2012 Census of Agriculture data at the county level
(www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Census_Web_Maps/
Overview; last accessed 30 September 2017). For nonfederal rangelands, defined as
grasslands that provide forage for grazing animals, we used data from the USDANatural
Resources Conservation Service (available at https://www.nrcs.usda.gov/wps/portal/nrcs/
detail/national/technical/nra/nri/?cid5stelprdb1253602; last accessed 30 September
2017). This provides rangeland area in hectares, which we convert to the percent of
rangeland for each U.S. county.

To analyze precipitation, evapotranspiration, and atmospheric moisture transports,
we make use of the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim for the 1979 to 2015 period (Dee et al. 2011). ERA-Interim
assimilates multiple sources of atmospheric and surface data into a recent version of
ECMWF’s weather forecast model using up-to-date data assimilation methods.
Notably, it assimilates satellite-derived, moisture-sensitive irradiances and pays close
attention to representing the hydrological cycle. The moisture transports within the
ERA-Interim will be compared to those from the climate models.

Wemake use of all the models that participated in CMIP5 that provide all the data
needed. The need for 6-hourly data to evaluate moisture transports limits the
number of models to 18. We use one run from each of the models. The models and
some of their details are given in Table 1. To compare model simulations to the
observed state, we analyze the ‘‘historical’’ coupled simulations forced by known
and estimated changes in radiative forcing, land use, etc., for 1979 to 2005 and the
RCP8.5 business-as-usual projections of the 2006 to 2100 period forced by esti-
mates of changes in climate forcing, assuming no effort is made to reduce green-
house gas emissions. This scenario is chosen because of the current lack of any
enforceable and strong international agreement to combat climate change. All
model data were regridded to a common 283 28 grid. The numerical methods for
evaluating moisture transport in the models and ERA-Interim are as in Seager and
Henderson (2013), and computations were done on 6-hourly data. Computations are
first done for each model run before averaging in time for each model, as needed,
and then across the models to create the multimodel means shown here.

3. Methodology for projecting future aridity and impact on
agricultural economy

3.1. Future AI projections

The aridity index (AI), which equals precipitation P as a fraction of potential
evapotranspiration PET, AI5P/PET, was defined in Part I, where we evaluated it
using monthly data from the observationally based NLDAS-2. Here, we will use
data from both NLDAS-2 and from the CMIP5 models and compute AI for both
based on monthly data. AI is evaluated using seasonal means of P and PET. For the
models we have the simulations of the historical period and the projections of the
future. Hence, using subscripts h and f to refer to historical and future and N to refer
to NLDAS-2, we have AIN,h5PN,h/PETN,h. Similarly for the CMIP5 models,
denoted by subscript C, we have AIC,h5PC,h/PETC,h and AIC, f 5PC, f /PETC, f .
PET for both NLDAS and CMIP5 is computed using the Food and Agriculture

Earth Interactions d Volume 22 (2018) d Paper No. 5 d Page 4

http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Census_Web_Maps/Overview
http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Ag_Census_Web_Maps/Overview
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/nri/?cid=stelprdb1253602
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/technical/nra/nri/?cid=stelprdb1253602


Organization version of the Penman–Monteith equation (see Allen et al. 1998).
This is given by briefly dropping the N and C subscripts:

PETh5

0:408D(Rn,h2G)1 g
900

Ta,h1 273
u2,h(es,h2 ea,h)

D1 g(11 0:34u2,h)
, (1)

PETf 5

0:408D(Rn, f 2G)1 g
900

Ta, f 1 273
u2, f (es, f 2 ea, f)

D1 g(11 0:34u2, f )
, (2)

where the variables for Rn,G, Ta, u2, es, ea are taken from NLDAS-2 or CMIP5.
The term Rn is net surface radiation, G is ground heat flux (unavailable for the

Table 1. CMIP5 models used in this study, their ensemble size, institution, and
horizontal and vertical resolution.

Model
Ensemble

size Institute
Resolution

(lat 3 lon), level

1. BCC_CSM1.1 1 Beijing Climate Center, China
Meteorological Administration

T42 (2:7783 2:818), L26
2. BCC_CSM1.1(m) 1 T106, L26
3. BNU-ESM 1 College of Global Change and Earth

System Science, Beijing Normal
University (BNU)

T42, L26

4. CanESM2 5 Canadian Centre for Climate
Modeling and Analysis (CCCma)

T63 (1:8758 3 1:8758),
L35

5. CNRM-CM5 5 Centre National de Recherches
Météorologiques Centre
Européen de Recherche et de
Formation Avancée en Calcul
Scientifique (CNRM-CERFACS)

T127(1:48 3 1:48), L31

6. CSIRO Mk3.6.0 10 Commonwealth Scientific and
Industrial Research Organisation
in collaboration with the Queensland
Climate Change Centre of
Excellence (CSIRO-QCCCE)

T63(1:8758 3 1:8758),
L18

7. GFDL CM3 1 Geophysical Fluid Dynamics
Laboratory (NOAA GFDL)

C48 (2:08 3 2:58), L48
8. GFDL-ESM2G 1 2:08 3 2:58, L24
9. GFDL-ESM2M 1 2:08 3 2:58, L24
10. HadGEM2-CC 1 Met Office Hadley Centre N96, L38
11. INM-CM4.0 1 Institute for Numerical

Mathematics (INM)
1:58 3 2:08, L21

12. IPSL-CM5A-LR 4 Institut Pierre-Simon Laplace (IPSL) 1:8758 3 3:758, L39
13. IPSL-CM5A-MR 1 1:258 3 2:58, L39
14. IPSL-CM5B-LR 1 1:8758 3 3:758, L39
15. MIROC5 3 Atmosphere and Ocean Research

Institute (University of Tokyo),
National Institute for Environmental
Studies, and Japan Agency for
Marine-Earth Science and
Technology (AORI/NIES/JAMSTEC)

T85, L40
16. MIROC-ESM 1 T42, L80
17. MIROC-ESM-CHEM 1 T42, L80

18. MRI-CGCM3 1 Meteorological Research Institute
(MRI)

TL159 (1:1258 3 1:1258),
L48
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models and set to zero), Ta is air temperature, u2 is wind speed above the surface, es
is the saturation vapor pressure at Ta and ea is the actual vapor pressure (both in
mb), D is the slope of the saturation vapor pressure curve with temperature, and g is
the psychrometric constant. Unlike for NLDAS-2, we found that for some models
it was necessary to set a minimum vapor pressure deficit VPD5 es2 ea in order to
prevent very small or negative PETand extreme large and/or negative values of AI.
A minimum value of 0.1mb (considerably less than typical minimumwinter values
of 1mb or more) was imposed.

As we shall see, AIC,h, the CMIP5 model AI for the historical period, has sig-
nificant biases compared to that from NLDAS-2 AIN,h, including a much weaker
zonal gradient. To examine future changes in the AI, we wish to preserve the spatial
features of the observed historical period and hence adopt a bias correction
methodology. We will use the CMIP5 models to evaluate the fractional change in
AI at each latitude and longitude and then adjust the long-term 1979–2015 cli-
matological NLDAS-2 AI, denoted by AIN,h, by the CMIP5 modeled fraction.
Hence, for each season, year, and model, we compute

aP,PET5AIC, f /AIC,h. (3)

Here, the subscript P, PET indicates that this fraction is evaluated allowing for all
climate information to vary from the historical period to the future. Next, we evaluate

AIN, f 5aP,PET3AIN,h. (4)

This then is the bias-corrected AI projection, based on both NLDAS-2 and the
CMIP5 models, allowing for all climate to change. The term AIN, f was evaluated
for each season and year from 2016 to 2100 for each model. The results are shown
for the multimodel average.

It is of interest to determine the physical causes of the change in AI. To do this
we compute projections of AI, allowing P and PET to change one at a time. For
this, we define AIC, f ,P as the model AI for the future, allowing only P to change and
keeping PET at historical values, and AIC, f ,PET as the model AI for the future,
allowing only PET to change and keeping P at historical values. These are

AIC, f ,P5Pf /PETh and (5)

AIC, f ,PET5Ph/PETf . (6)

Next, for each season, year, and model, we compute fractional changes aP and
aPET that arise from P and PET change, each in isolation:

aP5AIC, f ,P/AIC,h and (7)

aPET5AIC, f ,PET/AIC,h. (8)

We can then apply these fractional changes to the NLDAS-2 AI to derive bias-
corrected AI projections:
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AIN, f ,P5aP3AIN,h and (9)

AIN, f ,PET5aPET3AIN,h. (10)

These are the future AI if only P or PET changed in isolation to be compared to
when they all change together AIN, f .

3.2. Evaluating plausible impacts of future aridity on the
agricultural economy

In Part I, we showed using maps that there was a notable west–east gradient in
farm size and rangeland coverage, at all latitudes, and percent of cropland under
wheat or corn, in the northern plains, that was associated with the aridity gradient.
To examine how changes in AI will impact the agricultural economy we will first
use the historical data to examine farm size, rangeland coverage, and percent of
crops under corn as a function of the AI. This will be done separately for the
southern, central, and northern plains, with the expectation that we will see dif-
ferent relationships. We will then fit polynomials to the data distributions. We will
then use the future bias-corrected AI projections and the polynomial relations
developed on observed historical data to project future farm size, rangeland cov-
erage, and percent of crops under corn. For the historical relations it is reasonable
to suppose that they reflect an adjustment of the farm economy to prevailing en-
vironmental conditions. The projections therefore simply assume that the future
farm economy will undergo a similar adjustment to changing environmental
conditions and ignore other changes (technological change, economic adjustment,
subsidies, etc.) that could also be influential. Our goal here is to provide a simple
illustration of plausible change and not a prediction of actual expected change,
which will additionally be affected by other factors such as changes in technology
and plant water-use efficiency caused by CO2 fertilization.

4. Results

4.1. The 100th meridian in state-of-the-art climate models

We begin by examining how well the current generation of climate models
(those participating in CMIP5) simulate P, PET, and the AI. Figure 1 shows these
by season for the multimodel average across the CMIP5 models, and Figure 2
shows annual-mean values and, for comparison, those from NLDAS-2. The pre-
cipitation distribution, with the wettest conditions in the Pacific Northwest and
southeast in winter and spring and drier conditions in the southwest and interior
west year-round, is qualitatively correct. Also qualitatively correct is the more
zonal pattern of PET with declining values from south to north and the develop-
ment of high PET regions in the southwest and southern plains in summer. The
model AI shows vast areas of highly positive values in the northwest and east
during fall and winter separated by a central region of lower values that spreads
into the southwest and widespread values less than 1 in the spring and summer with
minimum values in the southwest.

Earth Interactions d Volume 22 (2018) d Paper No. 5 d Page 7



Comparing the annual-mean P, PET, and AI to those derived from NLDAS-2
(Figure 2), it is clear the models fail to simulate the stark west–east AI gradient
across the plains. In the central and northern plains there are regions of too high AI
to the west and too low AI to the east of the 100th meridian. The bias originates in
1) far too high AI in the interior northwest, 2) AI values that are not low enough in

Figure 1. Parameters P, PET, and AI by season for (top to bottom) October–
December (OND), January–March (JFM), April–June (AMJ), and July–
September (JAS) for the average across the CMIP5 models for the
historical period. Units for P and PET are mmday21.
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Figure 2. Annual-mean P, PET, and AI (top and third rows) and the AI that results from
zonal variations in (left) VPD alone (second and bottom rows) and (right) P
alone (second and bottom rows) for the (top) CMIP5 multimodel average
and (bottom) NLDAS-2 evaluated for the same 1979 to 2014 period. Units
for P and PET are mmday21.
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the western plains at all longitudes and in the southwest, and 3) too weak a gradient
of increasing AI from the central to eastern plains (even as the models overestimate
AI in the Appalachian region).

Next, as in Part I, we recompute for each model AI while setting all quantities
except 1) VPD and 2) P to their zonal-mean values for the season and year and then
average across the models. This allows determination of the causes of zonal variations
in AI within the model ensemble mean. Figure 2 shows the AI that derives from zonal
variations in VPD alone AIVPD and the AI arising from zonal variations in P alone
AIP for both NLDAS-2 and the CMIP5 multimodel mean. Both contribute to the
model biases in simulating the AI field. The models underestimate the tendency to
aridity introduced by high VPD in southwestern North America and extending into
the southern and central plains. Errors in the precipitation simulation make the AIP
too high across the interior northwest, the northern plains, and southwest and southern
plains. This is no doubt, in part, because of the low model resolution not representing
the topography of the coastal ranges and their ability to wring out moisture. In
general, the models underestimate how dry the interior west of North America is. The
models also overestimate AIP in the southeast and Appalachian region.

To examine the relations between model AI,P, and moisture transports, in Figure 3
we plot annual-mean P, actual evapotranspiration E, and P2E for NLDAS-2, ERA-
Interim, and the CMIP5 multimodel mean and the vertically integrated moisture
transport for ERA-Interim and themultimodel mean. In a steady state, the convergence
of the vertically integrated moisture transport balances P2E. At the surface, in steady
state and the absence of a moisture source for the atmosphere (e.g., oceans and lakes),
P2E must be positive and balanced by runoff. Relative to NLDAS-2, the models are
too wet across the west and too dry in the Midwest, decreasing the zonal gradient of P.
Comparing the ERA-Interim and model moisture transports it is seen that, in the
northwest, the models do not simulate the coastal trapping of moisture incoming from
the Pacific Ocean by the coastal ranges and instead allow too high precipitation to
extend too far inland to the east. Too much moisture also leaks into the interior west
from the Pacific Ocean across California and Mexico (see also Sheffield et al. 2013).
More generally, the models have excessive P across much of the continent with the
exception of the Gulf Coast. This is not attributable, in general and clearly, to erro-
neous moisture transport from the oceans to the continent, except across western
mountains. Instead, the excess P goes along with excess E. Sustaining excess P with
excess E allows for less of a bias in P2E (and, hence, runoff), and model P2E
compares more favorably with NLDAS-2 P2E than does P or E. (The ERA-Interim
P2E is unphysically negative in the western plains and the southwest, which em-
phasizes the difficulty data assimilation schemes have handling the hydrological cy-
cle.) Regardless, the conclusion is that the models recycle too much moisture between
the land surface and precipitation. Excess recycling increases P. If PET was un-
changed, increasing P would increase AI. However, too much recycling also causes
excess ET and, hence, surface cooling that could reduce PET and further increase AI.

4.2. Bias-corrected model projections of changes in aridity

In Figure 4, we show maps of the bias-corrected AI averaged over 2021–40,
2041–60, 2061–80, and 2081–99 as well as the differences between these periods
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and the 1979–2015 NLDAS-2 AIN,h. Notably the essential spatial structure of AI
with the marked zonal gradient in the plains remains over the course of the twenty-
first century. However, comparing to the 1979–2015 AI map in Figure 3, there is a
noticeable eastward encroachment of low AI into the western plains, while the
region of AI’ 1 moves east across the borders of South Dakota–Minnesota,
Nebraska–Iowa, Kansas–Missouri, Oklahoma–Arkansas, and Texas–Louisiana.
There is a striking increase in the relative aridity (lower AI) in the Gulf Coast states
and Appalachia and parts of the Midwest. This is easily seen in the maps of change
in AI, where it is also noticed that AI declines more in the east than in the west of
the United States. As such the aridity gradient not only moves eastward but also

Figure 3. (columns left to right) Annual-mean P, E, and P 2 E for (top) NLDAS-2,
(middle) ERA-Interim, and the (bottom) CMIP5multimodel mean. For ERA-
Interim and CMIP5, the vertically integrated moisture fluxes are also
shown as vectors. All results are for 1979 to 2015. The units for P, E, P2 E are
mmday21, and the moisture fluxes are kg21m22 s21 with reference
vectors at bottom right of panels

Earth Interactions d Volume 22 (2018) d Paper No. 5 d Page 11



Figure 4. (top) Annual-mean, bias-corrected AI as computed from the CMIP5 model
ensemble for four two-decade periods of the current century shown as ab-
solute values and (bottom) difference relative to the 1979–2015 climato-
logical values. In the difference maps, stippling is added where more than
three-quarters of themodels agree on the sign of the change and agree with
the ensemble-mean sign change.
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becomes more muted. By midcentury there is widespread model agreement on
these changes away from the locations where the projected change is small.

What are the main causes of the change in AI? To examine this we recompute the
bias-correctedAI holding, for eachmodel, the PET fixed at the climatological 1979–2015
value but allowing P to change to create AIN, f ,P and then allow PET to vary while
holding P at the climatological value to create AIN, f ,PET (see section 3 for the details).
Figures 5 and 6 show the maps of AIN, f ,P and AIN, f ,PET and their change relative to
the historical period AIN,h in the same format as for the total changes in Figure 4.

The changes in P alone tend to reduce AI in the southern part of North America,
most strongly in the Gulf states, and increase AI across northern North America,
most strongly in the Northeast. There is considerable model agreement on these
changes. These patterns are somewhat different to changes in P alone (see Seager
et al. 2014) because of the seasonal weighting by PET, which provides preferential
weighting to the cooler, low PET, seasons. The P-induced changes in AI only
modestly weaken the AI gradient across the southern plains. In contrast, the PET-
induced changes in AI cause a notable decline everywhere in Mexico and the
United States and also a weakening of the west–east gradient as AI declines more
east of the 100th meridian than west (again with considerable model agreement).
This is because a given change in PET will yield a larger change in AI in the east,
where the historical PET is smaller and the historical AI is larger than in the west.
The models agree everywhere that climate change will increase PET and tend to
reduce AI. This is no doubt because of the dominant influence of rising temperature
and vapor pressure deficit on PET (Cook et al. 2014).

To look at the temporal evolution of the aridity gradient we average the AI over
latitude for the northern (4282488N), central (3682428N), and southern (3082368N)
plains. The time span covers 1979 to 2100 and so shows the actual NLDAS-2 AI
followed by the bias-corrected AI from 2016 on. A time smoothing has been
applied primarily to reduce the year-to-year variability that is strong in NLDAS-2.
The model projections are an average across models and, in contrast, are relatively
smooth in time because of isolating the forced response. The resulting Hovmöller
plots are shown in Figure 7. The general decrease in AI is clear at all longitudes as
well as the muting of the zonal gradient, while the eastward shift of AI values is
most evident in the southern and central plains and less so in the north. None-
theless, in terms of AI value, the effective 100th meridian progressively moves east
as the century advances.1

4.3. Potential influences of aridity change on the farm economy

In Part I, we showed maps that demonstrated how farm size, number of farms,
rangeland coverage, and percent of cropland used to grow wheat or corn have
evolved to reflect the sharp west–east aridity gradient across the plains, albeit with
notable exceptions (e.g., Nebraska where irrigation from the Ogallala Aquifer
allows cultivation of corn in a dry state). Here, we present the same data in a

1 We also evaluated the variability of annual-mean AI values. Relative to NLDAS-2, the average
of variability across the models reasonably reproduces interannual variability of AI in the plains but
underestimates it in the northern plains. The models do not project a notable change in AI varia-
bility over the current century.
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Figure 5. As in Figure 4, but only allowing P to change, keeping PET at the 1979–2015
climatological values.
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Figure 6. As in Figure 4, but only allowing PET to change, keeping P at the 1979–2015
climatological values.
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different way by plotting in Figure 8, for the northern, central, and southern plains,
the farm size, percent of the county under rangeland, and percent of cropland under
corn as a function of the NLDAS-2 AI. Each data point is the average across
latitude and longitude for a 18 longitudinal bin.

Figure 7. The NLDAS-2 AI for 1979–2015 followed by, for 2016–2099, the bias-
corrected AI as computed from the CMIP5 model ensemble and aver-
aged over the (top) northern, (middle) central, and (bottom) southern
plains as a function of time (vertical axis) and longitude (horizontal axis).
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To assess how the projected changes in AI might impact the farm economy, we
will use statistical relations described by the third-order polynomial curves that
best fit the observed farm variable–AI relations. These curve fits are also shown in
Figure 8 for the three farm quantities and three regions of the plains. Consistent
with the maps shown in Part I, at all latitudes there is a decrease in farm size as AI
increases. This is the reflection in farm–AI space of the decrease in farm size from
west to east across the plains, as expected in terms of the area of operation required
to achieve profitability in the face of lower aridity and increased land productivity.
In the southern and central plains, there is little relation between the percent of
cropped land under corn and AI. This reflects the small area under corn in the south
and the ‘‘Nebraska exception’’—high percentage of corn cropping in an arid area
caused by accessible groundwater and irrigation—in the central plains. However,
in the northern plains there is a clear increase of the percent of cropped land under
corn as AI increases, reflecting the transition from wheat cultivation in the
northwest plains to corn cultivation in the northeast plains (see Part I).
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Figure 8. (left)The farm size in acres, (center) percent of cropped land under corn,
and (right) average percent of counties under rangeland plotted against
the 1979–2015 AI from NLDAS-2 for the (top) northern, (middle) central,
and (bottom) southern plains. The values corresponding to the dots are the
average for 18 longitude bins. The black lines are best-fitting, third-order
polynomial curves.
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Across the plains the percent of counties under rangeland decreases from west to
east, reflecting the opportunity for more intensive use of land in the more humid
eastern plains.

The bias-corrected projections of AI can then be used to infer from the curves
in Figure 8 the projected future changes in farm size and percent of cropped land
under corn. That is, we first develop the current functional relations: FSh5
p(AIN,h), PCh5 q(AIN,h), PRh5 r(AIN,h), where FSh is current farm size, PCh is
current percent cropped land under corn, PRh is current percent county under ran-
geland, and p, q, r are the polynomial functions in Figure 8. The projections are then
FSf 5 p(AIN, f ), PCf 5 q(AIN, f ), PRf 5 r(AIN, f ). Figure 9 then shows the farm size,
percent cropped land under corn, and percent county under rangeland as a function of
longitude for the present and two-decade periods during the current century. The
varying strength of the dependence of farm size on AI introduces interesting lat-
itudinal structure to the projections of increase in farm size. While AI decreases most
in the southeastern plains (where farm size is projected to increase), the largest in-
crease in farm size is projected for the southwestern plains because here, while the
decrease in AI is smaller, the historical relation between decreasing AI and increasing
farm size is very strong (Figure 8). In the southwestern plains, this naive model would
suggest farms will need to increase their size by a quarter to a third to restore equi-
librium with the increased aridity. In the central and northern plains, the decrease in
AI is less, and the sensitivity of farm size to is AI weaker, and these combine to give
consistent but modest projections of increases in farm size on the order of 10%.

As expected for the southern and central plains the changes in AI do not lead to
projected changes in the percent of cropped land under corn because of the absence
of dependence of the latter on AI or longitude in the historical period. In the
northern plains, where the U.S. Corn Belt encroaches in the east and corn can reach
over 50% of cropped land, declining AI leads to little change in the percent of corn
in the near future but a decline of up to a few percent later in the century. Although
not shown, the same methodology projects that wheat cropping would expand in
the cropland vacated by corn. In all regions of the plains, and primarily east of the
100th meridian, the naive model suggests an increase in the percent of land under
rangeland as aridity increases.

5. Discussion and conclusions
The 100th meridian was shown in Part I to be a stark divider between a more arid

west and more humid east that is expressed well in the natural landscape and also in
the farm economy. While the plains have experienced a never-ending variation be-
tween times of drought and times of pluvial (Cook et al. 2007; Stahle et al. 2007;
Seager et al. 2005; Herweijer et al. 2006; Schubert et al. 2004; Forman et al. 2001) in
which the aridity gradient would have changed in intensity and location, it appears
that agriculture has evolved in a way that the size of farms, and how the farm land is
used, responds to the mean aridity gradient. However, in recent decades, human-
induced climate change has been added onto this natural variability. The United States
has broadly warmed (apart from the southeast; Capparelli et al. 2013), while radia-
tively forced precipitation changes have been modest to date (with a slight reduction
in the southwest; Seager and Hoerling 2014). Consequently, we argue that the farm
economy has come into rough statistical equilibrium with the spatially varying aridity
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intensity of the plains and the oscillations between drier and wetter years. This rea-
soning also implies that the farm economy will evolve as the climate conditions of the
plains respond to rising greenhouse gases. To determine what might happen requires
projections by models of future conditions. This in turn requires an assessment of how
well models can simulate the aridity intensities of the plains. In this paper we assess
the ability of the current generation of state-of-the-art climate models that participated
in CMIP5 to simulate North American climate, focusing on the plains, and also
develop statistical relations between aspects of the farm economy and aridity. Finally,
we develop bias-corrected projections of aridity and use these to develop simple
projections of the farm economy variables over the current century. The conclusions
are as follows:

(i) Climate models generally fail to correctly simulate the amplitude and
spatial variation of aridity, measured by AI5P/PET, across North
America. While they tend to have reasonably realistic PET, which is
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Figure 9. (left) The farm size in acres, (middle) projected percent of cropped land
under corn, and (right) percent of land under rangeland plotted against
longitude for the (top) northern, (middle) central, and (bottom) southern
plains and for 1979–2005 (blue) and projected 2030–50 (black) and 2070–90
(red). The projections use the best-fit curves to the historical relation be-
tween farm variables and AI and the bias-corrected AI from CMIP5 models.
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primarily influenced by temperature, they tend to overestimate P because
of excessive continental E and are unable to simulate the trapping of
wintertime eastward moisture advection from the Pacific by the coastal
ranges. As such, the models overestimate AI, underestimate its gradient
across the plains, and fail to demarcate the stark contrast across the
continent between an arid west and a humid east with the 100th meridian
as the well-defined, semiarid, subhumid border.

(ii) To preserve the gradient in the projections of AI we developed a bias-
corrected method that altered the observations-based AI from NLDAS-2
by the fractional difference between the CMIP5 multimodel means for
the future and the 1979–2015 historical period. The bias-corrected
projections show an overall decrease in AI (increase in aridity) across
Mexico and the United States.

(iii) When the model projections of future AI are decomposed into contri-
butions from changes in P and PET it is shown that the change in P
causes increased aridity across southern North America and decreased
aridity to the north but that rising PET (caused by atmospheric warming)
causes increasing aridity everywhere.

(iv) Because of the greater AI and smaller PET in the east than the west, the
projected cross-continent increases in PET cause aridity to increase by
more in the east than the west. This reduces the strength of the west–east
aridity gradient across the central part of the continent. It also means that
the effective 100th meridian—that defined by an aridity level as opposed to
a specific longitude—moves progressively east as the century progresses.

(v) Aspects of the farm economy well reflect the west–east aridity gradient.
Across the plains, farm size increases as aridity intensifies (to the west). In
the northern plains, as aridity declines from west to east, cropped land is
increasingly used to grow corn instead of wheat. Given the reasonable
assumption that the farm economy evolved over the past century and more
to adjust to the environmental conditions, it is expected that it will evolve
further in coming decades as those environmental conditions progressively
change toward heightened aridity. A simple projection of the current farm
economy–AI relations into the future predicts that farm size will need to
increase across the plains, but especially in the south, and that in the
northern plains therewill be a shift toward wheat cultivation and away from
corn. Rangeland would expand to the east. The changes in farm size and
percent of cropland under wheat or corn are coupled. The value of
production and profit per acre are higher for corn than for wheat (see USDA
data at https://www.ers.usda.gov/data-products/commodity-costs-and-
returns/), and hence a shift from corn to wheat will require an increase in
farm size to maintain farm profitability. Across the plains but primarily east
of the 100th meridian the projections suggest increased percent of land
under rangeland. The current west–east gradients in farm size, choice of
crop, and rangeland already reflect environmental reality, and so the
projected environmental-driven changes make sense, all else being equal.

There are many caveats that should be attached to this work and its conclusions.
First, we have shown that state-of-the-art models simulate the aridity gradient
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across North America poorly. Hence, even though we have applied a bias cor-
rection to the projections to remove the mean state bias, it can be questioned
whether these models should be trusted to properly simulate the changes. In re-
sponse we would say that the model error that leads to an incorrect mean state
aridity arises from the precipitation simulation, while the projected aridity change
arises most strongly from the temperature and vapor pressure deficit change, which
we suspect is more faithfully simulated. Second, while current Earth system
models (the subset of all climate models that simulate, in varying degrees of
complexity, vegetation and carbon dynamics) predict widespread declines in soil
moisture and increases in continental aridity, they also simulate increases in net
primary productivity (Scheff et al. 2017; Mankin et al. 2017). This is because,
within the models, the beneficial effects on photosynthesis and water-use efficiency
of increased CO2 overwhelm the effects of increased temperature and vapor
pressure deficit. Hence, perhaps, the aridity gradient as expressed in vegetation and
crops will not move east as suggested here on the basis of a simple metric like AI in
which the computation of PET does not account for biophysical changes. In re-
sponse, we would say that CO2 effects thus far appear to be highly geographically
variable (Zhu et al. 2016) and that models quite conceivably overestimate the
biophysical response to CO2 [see review by Cook et al. (2016) and discussions in
Scheff et al. (2017), Mankin et al. (2017), and Allen et al. (2015)]. However, it is
also likely that enhanced CO2 is increasing crop water-use efficiency to some
degree and may alter the relationship between the farm economy and AI. Third, the
farm economy projections do not account for changes in crop technology, farming
practice, farm policy, and the wider economy. In response we would say that this is
an entirely valid criticism, and we emphasize that the farm projections are ‘‘naive’’
and merely attempt to illustrate how, all else being equal, the farm economy would
adjust to future changes in AI, given how it has adjusted to prevailing AI over past
decades. That said, complex calculations that use a computable general equilib-
rium model of the U.S. farm economy driven by climate model projections
(Malcolm et al. 2012) also conclude that there will be a shift from corn to wheat in
the area that our naive methods project the same transition. However, the projected
expansion of rangelands eastward may be restricted because this is into lower
regions with higher daytime maximum and nighttime minimum temperatures that
could stress cattle (e.g., Gaughan et al. 2010).

Over the past century the adjustment of the farm economy to aridity in the plains
was not steady but instead occurred in jumps. The Dust Bowl drought of the 1930s
made evident that many farms were too small to ensure profitability in the face of
adverse environmental conditions and to effectively practice erosion control
(Hansen and Libecap 2004). Recovery from the drought led to a permanent in-
crease in farm size and a permanent change in many aspects of the agricultural
economy (Hornbeck 2009). The steady increase in aridity over the current century
shown here is also artificial. It is only that steady because we have averaged across
many different climate models in order to identify the common change caused by
rising greenhouse gases. In the real world, the response to radiative forcing will
occur against the background of natural variability on interannual to decadal time
scales. Variability plus forced change can combine to create abrupt shifts in aridity
or temporally mask an ongoing forced aridification. Advances in decadal predic-
tion of the natural variability of oceans and their influence on North American
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hydroclimate (Seager and Ting 2017) and projection of forced change might allow
anticipation of how the natural environment of the plains will alter over the coming
decades. This information may be able to inform policy that can aid adaptation to
changing conditions and avoid the negative effects of surprises followed by crises
and social and economic disruption.
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