
MATH 6373
Final Assignment

Below you can find 3 problem sets. Pick one of them and submit
complete solutions to all of the problems that it contains. Feel
free to structure your solutions as you see fit (for example, it
might be helpful to write your solutions as a narrative discussing
several problems at once). Problems marked with B have a higher
difficulty.



PROBLEM SET 1 — CHEVALLEY’S THEOREM

The goal of this problem set is to give a proof of Chevalley’s theorem.

Definition. Let X be an algebraic variety (or, more generally, a Noetherian topological space). The collection of
constructible subsets of X is the Boolean algebra of sets generated by the open sets of X. In other words, a subset
of X is constructible if it belongs to the smallest family of subsets that contains the open sets of X and is closed
under finite intersection and complementation.

Theorem (Chevalley). Let π : X → Y be a morphism of algebraic varieties. Then π sends constructible sets to
constructible sets. In particular, the image π(X) is a constructible subset of Y .

In the proof of Chevalley’s theorem we will use the following theorem, whose proof we have seen in class.

Theorem (Fundamental Theorem of Elimination Theory). For any algebraic variety X, the projection Pn×X → X
is closed (i.e., it sends closed sets to closed sets).

Problem 1.1: Show that a set is constructible if and only if it is a finite disjoint union of locally closed sets.

Problem 1.2: Reduce Chevalley’s theorem to the case where Y is affine.

Problem 1.3: Reduce further to the case where X is also affine.

Problem 1.4: Reduce further to the case where X = An × Y and π is the projection onto the second factor.

Problem 1.5: Reduce further to the case where X = A1 × Y and π is the projection onto the second factor.

Problem 1.6: Reduce further to showing that for any affine variety Y and any locally closed subset Z ⊆ A1 × Y ,
the image of Z under the projection π : A1 × Y → Y is constructible.

Problem 1.7: Reduce further to showing that for any affine variety Y and any irreducible closed subset Z ⊆ A1×Y ,
the image of Z under the projection π : A1 × Y → Y is constructible.

After the reduction given in the previous problem, the situation is as follows. The variety Y is affine, so it
corresponds to some K-algebra A(Y ) =: R, and A1 × Y corresponds to the K-algebra A(A1 × Y ) = R[t]. The
projection π : A1 × Y → Y corresponds to the inclusion of rings π] : R ↪→ R[t].

The irreducible closed subvariety Z ⊆ A1 × Y is cut out by finitely many polynomials f1, . . . , fm ∈ R[t]. Let
a1, . . . , ar ∈ R be the coefficients appearing the polynomials f1, . . . fm. Consider the subset F ⊆ Y given by

F = {y ∈ Y | π−1(y) ⊆ Z}.

Problem 1.8: Show that F is closed. More precisely, show that F = V (a1, . . . , ar).

Problem 1.9: Reduce Chevalley’s theorem to proving the statement of problem 1.7 in the case where Z contains
no fibers of π.

After the reduction given in problem 1.9, we assume from now on that Z is an irreducible closed subset of
A1 × Y containing no fibers of π. We consider the natural inclusion A1 × Y ⊂ P1 × Y and let Z be the closure of
Z in P1 × Y . Define Z∞ = Z r Z. From the fundamental theorem of elimination theory, we know that π(Z) and
π(Z∞) are closed subsets of Y .

Problem 1.10: Show that π(Z) is irreducible.

B Problem 1.11: Show that π(Z∞) 6= π(Z).

Problem 1.12: Using Noetherian induction, conclude the proof of Chevalley’s theorem.

Definition. (The right definition of dominant) A rational map f : X 99K Y is dominant if for some open dense set
U ⊆ X where f is defined, the image f(U) is dense in Y .

Problem 1.13: Show that in the definition of dominant one can replace the statement “f(U) is dense in Y ” with
the statement “f(U) contains an open dense subset of Y ”.

Problem 1.14: Prove that the composition of dominant maps is well-defined and is again dominant.



PROBLEM SET 2 — THE GRASSMANNIAN OF LINES IN 3-SPACE

Consider the following Grassmannian:

G = G(2, 4) = G(1, 3) = {L ⊂ P3 | dimL = 1 and L is linear}.

We let x0, x1, x2, x3 be the homogeneous coordinates in P3, dual to the canonical basis {e0, e1, e2, e3} of K4.
We consider the linear subspaces of K4 spanned by the last k elements of the canonical basis (as k varies from 1
to 3), and consider the corresponding linear subspaces of P3:

p0 = P(Ke3) ∈ P3, L0 = P(Ke2 ⊕Ke3) ⊂ P3, Π0 = P(Ke1 ⊕Ke2 ⊕Ke3) ⊂ P3.

The sequence p0 ∈ L0 ⊂ Π0 ⊂ P3 is an example of a linear flag in P3.
Recall that the Plücker embedding gives an inclusion G ⊂ P5. The 6 homogeneous coordinates in P5 are denoted

x01, x02, x03, x12, x13, x23, and called the Plücker coordinates; they correspond to the 2×2 minors of a 2×4 matrix.
We consider the subset Σ ⊂ G× P3 given by:

Σ = {(L, p) | p ∈ L}.

The set Σ is called the incidence correspondence of G, or the universal family of lines in P3. The two projections
on Σ are denoted π1 : Σ→ G and π2 : Σ→ P3.

Problem 2.1: Show that G is cut out in P5 by the single equation x01x23 − x02x13 + x12x03 = 0.

Problem 2.2: Show that Σ is a closed subset of G× P5. Using this, show that for any closed subvarieties X ⊆ P3

and Y ⊆ G, the sets X = {L | L ∩X 6= ∅} ⊆ G and Y = ∪L∈YL ⊆ P3 are also closed subvarieties.

Problem 2.3: For any point p ∈ P3 and plane Π ⊂ P3 containing p, let Σp,Π ⊂ G be the locus of lines containing p
and contained in Π. Show that under the Plücker embedding, Σp,Π is mapped to a line, and that conversely every
line in P5 contained in G is of the form Σp,Π for some p and Π.

Problem 2.4: For any point p ∈ P3, let Σp ⊂ G be the locus of lines containing p; for any plane Π ⊂ P3, let
ΣΠ ⊂ G be the locus of lines contained in Π. Show that under the Plücker embedding, both Σp and ΣΠ get mapped
into two-planes in P5, and that conversely every two-plane Λ ' P2 ⊂ G ⊂ P5 is of the form Σp for some p or of the
form ΣΠ for some Π.

Problem 2.5: For any line L ⊂ P3, let ΣL be the locus of lines intersecting L. Show that ΣL = H ∩ G, where
H ⊂ P5 is a hyperplane. Show that ΣL is isomorphic to a projective cone over P1 × P1. Given any hyperplane
H ⊂ P5, is it true that the intersection H ∩G is of the form ΣL for some L?

The varieties
{L0} Σp0,Π0

Σp0
ΣΠ0

ΣL0
G

are known as the Schubert varieties of G. The collection of Schubert varieties under inclusion forms a partially
ordered set, known as the Bruhat poset of G. Given a Schubert variety Ω ⊆ G, we define Ω◦ = Ω r ∪Ω′⊂ΩΩ′. The
Ω◦ are known as the Schubert cells of G, and G◦ is known as the big cell. Notice that the Schubert cells give a
partition of G.

Problem 2.6: Draw the Hasse diagram for the Bruhat poset of G.

Problem 2.7: Give the equations of all the Schubert varieties in G.

Problem 2.8: Each point in G can be represented by a 2 × 4 matrix. Any such matrix is row-equivalent to a
unique matrix in reduced row echelon form. The columns corresponding to the leading 1’s in the reduced row
echelon form are called the pivots of the matrix. Show that two matrices belong to the same Schubert cell if and
only if they have the same pivots. In particular, show that each Schubert cell is of the form Ad for some d.

Problem 2.9: Let L1, L2 ⊂ P3 be skew lines (i.e, L1 ∩ L2 = ∅). Let Q ⊂ G be the locus of lines meeting both L1

and L2. Show that Q ' P1 × P1. What happens if L1 and L2 meet?

B Problem 2.10: Let Q ⊂ P3 be a smooth quadric surface, and let Q ⊂ G be the locus of lines contained in Q. Show
that Q has two connected components, Q = C1 ∪ C2, corresponding to two plane conic curves C1 ⊂ Λ1 ⊂ P5 and
C2 ⊂ Λ2 ⊂ P5, where Λ1 and Λ2 are two complementary two-planes in P5. Conversely, show that if C ⊂ Λ ⊂ P5,
where Λ is a two-plane not contained in G, C is a smooth conic in Λ, and C ⊂ G, then Q = ∪L∈CL ⊂ P3 is a smooth
quadric surface.

Optional Problem (for those familiar with (co)homology). Using the Schubert cell decomposition, compute the
(co)homology groups of G when the ground field is C.



PROBLEM SET 3 — SOME BIRATIONAL GEOMETRY

Consider the rational map from P2 to P4 given by

ϕ(x0 : x1 : x2) = (x2
0 : x0x1 : x2

1 : x0x2 : x1x2).

The closure of the image of ϕ will be denoted by X ⊂ P4 and is called the cubic scroll in P4.

Problem 3.1: Show that X is the closure of the image of the Veronese surface S ⊂ P5 under a projection
πp : P5 99K P4 from a point p ∈ P5. Find the point of projection p.

Problem 3.2: Show that X is isomorphic to the blow-up of the plane P2 at the point q = (0 : 0 : 1).

Via the identification of X with the blow-up of P2, the exceptional divisor of the blow-up corresponds to a curve
E ⊂ X ⊂ P4. This curve E is called the directrix of X.

Problem 3.3: Show that the directrix E is a line in P4.

Problem 3.4: For each line L in P2 containing the point q, the strict transform L̃ of L in the blow-up corresponds
to a curve L̃ ⊂ X ⊂ P4. Show that L̃ is a line in P4 intersecting E in one point.

Problem 3.5: For each line C in P2 not containing the point q, the strict transform C̃ of C in the blow-up
corresponds to a curve C̃ ⊂ X ⊂ P4. Show that C̃ is a plane conic in P4 (i.e, C̃ is contained in a two-plane

Π ' P2 ⊂ P4 and C̃ is a conic in Π). Show that C̃ is disjoint from E.

Problem 3.6: Let r ∈ X be any point, and consider the projection πr : X 99K P3. Let Q ⊂ P3 be the closure of
the image of πr. Show that Q is a quadric surface, and compute the rank of Q in terms of the point r.

Problem 3.7: Let Q ⊂ Pn be a quadric hypersurface, consider a point p ∈ Q, and the associated projection
πp : Q 99K Pn−1. When is πp birational?

B Problem 3.8: In the setup of the previous problem, assume that Q has full rank. Describe πp in terms of blow-ups
and blow-downs (a blow-down is the inverse of a blow-up).

In class we saw that the blow-up of a variety X along one function f ∈ A(X) gives an isomorphism. We also
saw that the blow-up of X along f1, . . . , fr ∈ A(X) only depends on the ideal (f1, . . . , fr). Since the ideal (f) gives
a subvariety of X of codimension one, we can ask if the blow-up along subvarieties of codimension one is always an
isomorphism. This is certainly not the case, as one can easily see in the case of blow-ups of singular curves along
points. Below are two examples in dimension two.

Problem 3.9: Consider the surface S ⊂ A3 given by the equation x2 = y2z. This surface is known as the Whitney
umbrella (the name “umbrella” comes from its picture when the ground field is R). Consider the line L ⊂ S ⊂ A3

given by x = y = 0 (i.e., L is the z-axis). Compute and describe the blow-up of S along L, and determine whether
S and the blow-up are isomorphic.

Problem 3.10: Consider the surface S ⊂ A3 given by the equation x2 = yz. This surface is known as a quadric
cone (notice that it is isomorphic to the surface given by the equation z2 = x2 +y2). Consider the line L ⊂ S ⊂ A3

given by x = y = 0. Compute and describe the blow-up of S along L, and determine whether S and the blow-up
are isomorphic.


